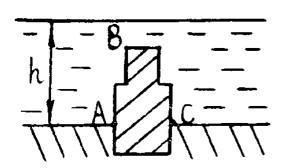
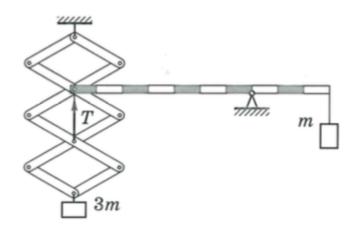
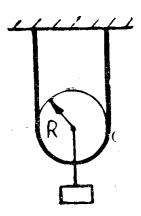

Домашнее задание №17


1. В дне сосуда с водой имеется сужающееся отверстие, плотно закрытое конической пробкой. Площадь основания пробки $S=8~{\rm cm}^2$, объём $V=24~{\rm cm}^3$. Уровень дна сосуда пересекает конус на половине его высоты. Уровень воды в сосуде $h=20~{\rm cm}$, атмосферное давление не учитывать. С какой силой вода действует на пробку? Куда направлена эта сила?


2. В полусферический колокол, плотно лежащий на столе, наливают через отверстие вверху воду (см. рисунок). Когда вода доходит до отверстия, она приподнимает колокол и начинает вытекать снизу. Найдите массу колокола, если радиус его R, а плотность воды ρ .


- **3.** Кубик из пластилина с длиной ребра a=3 см, в котором есть внутренняя полость, держится в некоторой жидкости на плаву, погружаясь на 1/3 своего объёма. Если этот кубик смять, то новое тело (уже без полости) тоже держится на плаву, погружаясь на 3/7 своего объёма. Определите массу использованного пластилина. Плотность пластилина при лепке не меняется и равна $\rho=1600$ кг/м 3 .
- **4.** Подводная опора, забитая в глинистый грунт водоёма глубиной h=3 м, представляет из себя два соосных цилиндра разного диаметра. Найти силу, действующую на опору со стороны воды в водоёме, если площадь сечения цилиндра большего диаметра, забитого в грунт, равна S=2 м², объём части опоры ABC, находящейся в воде, V=3 м³. Плотность воды $\rho=1$ г/см³.

5. Из лёгких стержней, соединённых шарнирно и образующих три одинаковых ромба, и лёгкого рычага, собрана система, к которой подвешены два груза m = 1 кг и 3m (см. рисунок). Определите силу натяжения нити T, удерживающей систему в равновесии.

6. Через блок радиуса R перекинут однородный гибкий канат массы m и длины l, прикреплённый к двум крюкам на потолке, расположенным на расстоянии 2R. На оси блока висит груз, масса которого вместе с блоком M. Трение между канатом и блоком отсутствует. Найти минимальную силу натяжения каната (см. рисунок).

Полезные статьи:

- **1.** Асламазов Л. Гидростатика // Квант. 1972. №12. http://kvant.mccme.ru/1972/12/gidrostatika.htm
- **2.** Черноуцан А. Гидростатика в стакане // Квант. 2008. №3. http://kvant.mccme.ru/pdf/2008/2008-03.pdf
- **3.** Бондаров М.Н. Задача о сообщающихся сосудах, или Двадцать лет спустя // Потенциал. 2014. №3. https://poждественскаяфизика.pф/publikacii/potential 3 2014.pdf