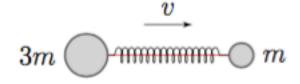

Домашнее задание №7


1. Определите ускорения грузов в системах, изображённых на рисунках *а* и *б*. Все нити невесомые и нерастяжимые. Блоки лёгкие. Трения нет. Массы грузов известны.

2. В горизонтальной гладкой трубе имеется кольцевая петля радиуса r (см. рисунок), расположенная в вертикальной плоскости. С какой минимальной скоростью должен двигаться в горизонтальном участке трубы тонкий гибкий канат длины $l > 2\pi r$, чтобы пройти через петлю? Считайте радиус петли r много большим радиусов трубы и каната. Ускорение свободного падения g.

3. Шарики массами m и 3m связаны нитью; между ними вставлена лёгкая пружина жёсткостью k, сжатая на величину x_0 . Система движется с некоторой скоростью вдоль прямой, проходящей через центры шариков. Нить пережигают, и скорость шарика массой m увеличивается в 7 раз. Найти начальную скорость шариков.

- **4.** Автомобиль массой $m=10^3$ кг начинает двигаться с постоянной тангенциальной проекцией ускорения $a_{\tau}=1$ м/с² по шоссе в виде дуги окружности радиусом R=100 м. Какую максимальную скорость он наберёт до начала проскальзывания колёс по асфальту, если коэффициент трения скольжения равен $\mu=0,3$? Какую мощность должен развить к этому моменту двигатель автомобиля?
- **5.** Конькобежец на ледяной дорожке старается пройти вираж как можно ближе к внутренней бровке. Велосипедист на велотреке проходит вираж возможно дальше от внутренней бровки. Почему?

Рекомендуемые статьи:

- 1. Самарский Ю., Движение по окружности. («Квант» №6 1984);
- 2. Шеронов А., Криволинейное движение. («Квант» №10 1981)