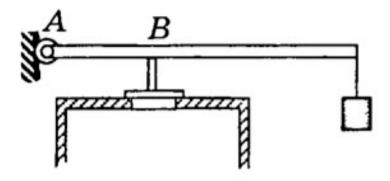
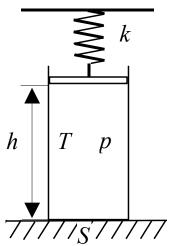

- **1.** Какова плотность идеального газа, у которого средняя квадратичная скорость хаотического движения молекул равна 500 м/c при давлении $1 \cdot 10^5 \text{ Па}$?
- **2.** Сосуд объёмом 10 л содержит смесь водорода и гелия общей массой 2 г при температуре 27 °C и давлении 200 кПа. Каково отношение массы водорода к массе гелия в смеси?
- 3. В вертикальном цилиндрическом сосуде с площадью поперечного сечения $S = 5 \text{ см}^2$, ограниченном сверху подвижным поршнем массы M = 1 кг с лежащим на нём грузом массой m = 0.5 кг, находится воздух при комнатной температуре. Первоначально поршень находился на высоте $h_1 = 13 \text{ см}$ от дна сосуда. На какую высоту поднимется поршень, если груз убрать с поршня? (Воздух считать идеальным газом, а его температуру неизменной. Атмосферное давление 10^5 Па.)
- **4.** Вертикально расположенный замкнутый цилиндрический сосуд высотой 50 см разделен подвижным поршнем весом 110 H на две части, в каждой из которых содержится одинаковое количество идеального газа при температуре 361 К. Сколько молей газа находится в каждой части цилиндра, если поршень находится на высоте 20 см от дна сосуда? Толщиной поршня пренебречь.

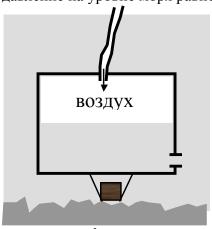

- **5.** В горизонтальной трубке постоянного сечения, запаянной с одного конца, помещён столбик ртути длиной 15 см, который отделяет воздух в трубке от атмосферы. Трубку расположили вертикально запаянным концом вниз и нагрели на 60 К. При этом объём, занимаемый воздухом, не изменился. Давление атмосферы в лаборатории 750 мм рт. ст. Какова температура воздуха в лаборатории?
- **6.** В запаянной с одного конца длинной горизонтальной трубке постоянного сечения (см. рисунок) находится столбик воздуха длиной $l_1 = 30,7$ см, запертый столбиком ртути. Если трубку поставить вертикально отверстием вверх, то длина воздушного столбика под ртутью будет равна $l_2 = 23,8$ см. Какова длина ртутного столбика? Атмосферное давление 747 мм рт. ст. Температуру воздуха в трубке считать постоянной.

7. В запаянной с одного конца стеклянной трубке, расположенной горизонтально, находится столбик воздуха длиной $l_1 = 30,7$ см, запертый столбиком ртути (рисунок 1). Если трубку закрепить вертикально отверстием вниз, то длина воздушного столбика над ртутью будет равна $l_2 = 43,2$ см (рисунок 2). Какова длина l ртутного столбика? Атмосферное давление 747 мм рт. ст. Температуру воздуха в трубке считать постоянной.

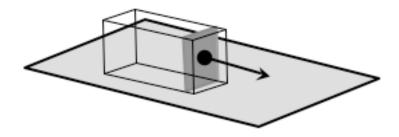
- **8.** Воздушный шар с газонепроницаемой оболочкой массой 400 кг заполнен гелием. Он может удерживать в воздухе на высоте, где температура воздуха $17\,^{\circ}$ C, а давление 10^{5} Па, груз массой 225 кг. Какова масса гелия в оболочке шара? Считать, что оболочка шара не оказывает сопротивления изменению объёма шара.
- 9. Сферическую оболочку воздушного шара делают из материала, квадратный метр которого имеет массу 1 кг. Шар наполняют гелием при атмосферном давлении 10^5 Па. Определите минимальную массу оболочки, при которой шар начнёт поднимать сам себя. Температура гелия и окружающего воздуха одинакова и равна 0° С. (Площадь сферы $S = 4\pi r^2$, объём шара $V = 4\pi r^2/3$.)
- **10.** Воздушный шар, оболочка которого имеет массу M = 145 кг и объем V = 230 м³, наполняется горячим воздухом при нормальном атмосферном давлении и температуре окружающего воздуха $t_0 = 0$ °C. Какую минимальную температуру t должен иметь воздух внутри оболочки, чтобы шар начал подниматься? Оболочка шара нерастяжима и имеет в нижней части небольшое отверстие. **Ответ:** ≈ 265 °C.
- **11.** В цилиндр объёмом $0.5\,\mathrm{m}^3$ закачивается воздух со скоростью $0.002\,\mathrm{kr/c}$. В верхнем торце цилиндра есть отверстие, закрытое предохранительным клапаном. Клапан удерживается в закрытом состоянии стержнем длиной $0.5\,\mathrm{m}$, который может свободно поворачиваться вокруг оси в точке A (см. рис.). К свободному концу стержня подвешен груз массой $2\,\mathrm{kr}$. Определите момент времени, когда клапан откроется, если в начальный момент времени давление воздуха в цилиндре было равно атмосферному. Площадь закрытого клапаном отверстия $5\cdot10^{-4}\,\mathrm{m}^2$, расстояние AB равно $0.1\,\mathrm{m}$. Температура воздуха в цилиндре и снаружи не меняется и равна $300\,\mathrm{K}$. Стержень считать невесомым.



12. Разогретый сосуд прикрыли поршнем, который с помощью вертикальной нерастяжимой нити соединили с потолком. На сколько процентов от начальной понизится температура воздуха в сосуде к моменту, когда сосуд оторвется от поверхности, на которой он расположен? Масса сосуда 5 кг. Поршень может скользить по стенкам сосуда без трения. Площадь дна сосуда 125 см². Атмосферное давление 10⁵ Па. Тепловым расширением сосуда и поршня пренебречь.


Ответ: 4%.

13. Газ с температурой $T=300~{\rm K}$ и давлением $p=2\cdot 10^5~{\rm \Pi a}$ находится в цилиндрическом сосуде с сечением $S=0,1~{\rm M}^2$ под невесомым поршнем, который удерживается пружиной с жесткостью $k=1,5\cdot 10^4~{\rm H/m}$ на высоте $h=2~{\rm m}$ над дном сосуда (см. рис.). Температуру газа увеличили на $\Delta T=15~{\rm K}$. Чему равно при этом смещение поршня Δh ?


Ответ: 4 см.

14. В понтон, лежащий на дне моря, закачивается сверху воздух. Вода вытесняется из понтона через нижнее отверстие (см. рисунок), и когда объем воздуха в понтоне достигает 28 м³, понтон всплывает вместе с прикрепленным к нему грузом. В момент начала подъема расстояние от поверхности воды в понтоне до поверхности воды в море равно 73,1 м. Масса оболочки понтона 2710 кг. Определите массу поднимаемого груза. Температура воды равна 7°С, атмосферное давление на уровне моря равно 10⁵ Па. Объемом груза и стенок понтона пренебречь.

Ответ: 25·10³ кг.

15. В металлическом сосуде под поршнем находится воздух при атмосферном давлении (см. рисунок). Сосуд имеет массу 10 кг и расположен горизонтально на поверхности стола. Поршень может скользить без трения со стенками сосуда. Массой поршня и воздуха, заключенного в сосуде, можно пренебречь. За прикрепленный к поршню шнур медленно тянут в горизонтальном направлении. На сколько процентов возрастёт объём воздуха под поршнем к тому моменту, когда сосуд начнет скользить по столу? Коэффициент трения между сосудом и поверхностью стола равен 0,5. Площадь дна поршня 100 см². Атмосферное давление 10⁵ Па.

